You are here

Thomas F. Edgar

For a career of outstanding educational and professional leadership in automatic control, mentoring a large number of practicing professionals, and research contributions in the process industries, especially semiconductor manufacturing
Thomas F. Edgar is the George T. and Gladys H. Abell Chair in Chemical Engineering at the University of Texas at Austin and Director of the UT Energy Institute. For over 40 years, Edgar has concentrated his academic work in process modeling, control, and optimization, and has published over 450 articles and book chapters in the above fields applied to separations, chemical reactors, energy systems, and semiconductor manufacturing. His research has focused on control theory and computation for nonlinear and large-scale systems where he has supervised more than 80 Ph.D. students. Dr. Edgar is a Fellow of the International Federation of Automatic Control (IFAC), and has received a number of major AIChE research, education, and service awards. Dr. Edgar is a member of the U.S. National Academy of Engineering and won the AACC Ragazzini Education Award in 1992.  He served as the 1997 President of AIChE and was President of the American Automatic Control Council between 1989 and 1991. He co-directs the Texas-Wisconsin-California Control Consortium (TWCCC), which is supported by 12 companies and involves six faculty members from UT, UW, and USC. TWCCC has been very effective in bridging control theory and industrial practice and has been responsible for many advances in multivariable control, performance monitoring, fault detection, identification, and real-time optimization that have been applied by chemical, semiconductor, and energy companies during the past 20 years.
Edgar has co-authored the textbooks Optimization of Chemical Processes (McGraw-Hill, 1988 and 2001) and Process Dynamics and Control (Wiley, 1989, 2004 and 2011) with Dale Seborg, Duncan Mellichamp, and Frank Doyle. It is currently in its 4th edition revision and is the dominant control textbook in chemical engineering departments. Recently, Tom Edgar has helped lead the national effort on smart manufacturing and is co-founder of the Smart Manufacturing Leadership Coalition, which has 40 members from university, industry, government, and non-government organizations.
Text of Acceptance Speech: 
When I look back upon my career in the field of control, I think it may have started in 1957, when Sputnik was launched by the Russians. I was in the seventh grade at that time. The reaction of our local school board to losing the space race was to have a group of students take algebra one year earlier, in the eighth grade. During high school, I participated in my class science fairs and won at the state level. When I was a freshman at the University of Kansas in 1967, I was given the ability to do independent research in the area of nucleate boiling. I also was exposed to computer programming, which was a fairly new topic at that time in undergraduate engineering. I became interested in numerical analysis and selected Princeton University for doctoral study, because Professor Leon Lapidus was a leading authority on that topic.
I discovered his interest in numerical analysis was driven by solving control problems (specifically two point boundary value problems). The optimal control project I selected was on singular bang-bang and minimum time control. I used discrete dynamic programming with penalty functions (influenced by Bellman and Kalman) as a way to solve this particular class of control problems. In 1971 I accepted a faculty position at the University of Texas.
That era was the heyday of optimal control in the aerospace program. Many of us in chemical engineering wanted to apply these ideas to chemical plants, however, there were some obstacles. Economic justification was strictly required for any commercial application vs. government funding for space vehicles. In addition, proprietary considerations prevented technology transfer from one plant to another. It wasn't until the late 1970s, when Honeywell introduced the distributed digital control system, that computer process control really began to become more popular (and economic) in industry. In 1972, I purchased a Data General minicomputer to be used with a distillation column for process control. That computer was very antiquated by today’s standards; in fact, we had to use paper tape for inputting software instructions to the machine.
Given that there was a lack of industrial receptivity to advanced control research and NSF funding was very limited, I looked around for other types of problems where my skills might be valuable. In 1974 the energy crisis was rearing its head due to the Arab oil embargo. Funding agencies like NSF and the Office of Coal Research in the U.S. were quite interested in how we could use the large domestic resource of coal to meet the shortage of oil and gas. I came across some literature about a technology called underground coal gasification (UCG), where one would gasify the coal resource in situ as a way of avoiding the mining step. I recall reading it was a very promising technology but they didn't know how to control it. That sparked my interest as a possible topic where I could apply my skill set. But I first had to learn about the long history of coal gasification and coal utilization in general.
There were many issues that had to be addressed before developing control methodologies for UCG. There was a need to develop three-dimensional modeling tools that would predict the recovery of the coal as well as the gas composition that you make (similar to a chemical reactor). Thus 80% of the research work was on modeling as opposed to control. It was also a highly multidisciplinary project involving rock mechanics and environmental considerations. I worked in this area for about 10 years. Later in the mid-1980s, the U.S. no longer had an energy crisis, so I started looking at some other possible areas for application of modeling and control.
In 1984 a new senior faculty member joined my department from Texas Instruments. He was very familiar with semiconductor manufacturing and the lack of process control, and he was able to teach me a lot about that industry. Fortunately I did not have to learn a new field on my own since I was Department Chair with limited discretionary time. The same issues were present as for UCG: models were needed in order to develop control strategies. I have continued working in that area with over 20 graduate students spread out over the past 25 years and process control is now a mature technology in semiconductor manufacturing (see my plenary talk at this year’s ACC).
During the 1980s, I became interested in textbook writing and particularly the need to develop a new textbook in process control. I began collaborating with two colleagues at UC Santa Barbara (Dale Seborg and Duncan Mellichamp) and thought that UCSB would be a great place to spend some time in the summer writing and giving short courses on the topic. The course notes were eventually developed into a textbook eight years later. We now are working on the fourth edition of the book and it is the leading textbook for process control in the world. It has been a very rewarding endeavor to work with other educators, and I would recommend that anyone writing a textbook collaborate with other co-authors as a way of improving the product. In 2010, we added a fourth co-author (Frank Doyle) to cover biosystems control; in fact, he is receiving the practice award from AACC today.
In the early 1990s at UT Austin, Jim Rawlings and I concluded that we wanted to work on control problems that would impact industrial practice rather than just writing more technical papers that maybe only a few people would read. So we formed the Texas Modeling and Control Consortium (TMCC) which had 16 member companies. Over twenty plus years the consortium has morphed into one involving multiple universities investigating process control, monitoring, optimization, and modeling. When Jim left the University of Texas and went to Wisconsin, we decided to keep the consortium going, so it became TWMCC (Texas Wisconsin Modeling and Control Consortium). Joe Qin replaced Jim on the faculty at UT but then 10 years later he left for USC. So our consortium became TWCCC (Texas Wisconsin California Control Consortium). I have learned a lot from both Joe and Jim over the years and have been able to mentor them in their professional development as faculty members. I am now mentoring a new UT control researcher (Michael Baldea) as we continue to close the gap between theory and practice.
One other thing I should mention is my involvement with the American Control Conference. I first gave a paper in 1972 at what was known as the Joint Automatic Control Conference (JACC) and have been coming to this meeting ever since. In the 1970s each meeting was entirely run by a different society each year. To improve the business model and instill more interdisciplinarity with five participating societies, in 1982 we started the American Control Conference with leadership from Mike Rabins, John
Zaborsky, and also Bill Levine who is here today. I was Treasurer of the 1982 meeting, which was held in Arlington, VA. That began an extremely successful series of meetings that is one of the best conference values today.  It is very beneficial to attend to see control research carried out in the other societies and not just your own society.
During my 40+ year career, I have had a lot of help from colleagues in academia and industry and collaborated with over 100 bright graduate students. I also should thank my wife Donna, who has put up with me over these many years since we first started going to the computer center at the University of Kansas for dates 50 years ago.
My advice to younger researchers is to think 10 years out as to what the new areas might be and start learning about them. Fortunately, today’s control technology is more ubiquitous than ever and the future is bright, although the path forward may not be clear. I still remember a discussion I had with a fellow graduate student before leaving Princeton in 1971 as we embarked on academic careers. His view was that after all the great things achieved by luminaries like Pontryagin, Bellman, and Kalman, all that's really left are the crumbs… So I guess that means that I must have had a pretty crummy career.