You are here

Richard E. Bellman Control Heritage Award

The Bellman Award is given for distinguished career contributions to the theory or application of automatic control. It is the highest recognition of professional achievement for US control systems engineers and scientists. The recipient must have spent a significant part of his/her career in the USA. The awardee is strongly encouraged to give a plenary presentation at the ACC Awards Luncheon.

E.G. Gilbert

Year: 
1996
Citation: 
In recognition of a distinguished career in automatic control, with pioneering research contributions to a broad range of subjects including linear multivariable systems theory, computation of optimal controls, nonlinear systems theory, and motion planning in the presence of obstacles

Elmer G. Gilbert received his B.S.E. and M.S.E. degrees in Electrical Engineering in 1952 and 1953, respectively, and his Ph.D. in Instrumentation Engineering in 1957, all from the University of Michigan. He has been with the University of Michigan's Department of Aerospace Engineering (then called Aeronautical Engineering) since 1954, becoming Professor in 1963 and Professor Emeritus in 1994.

Text of Acceptance Speech: 

July 4, 1996

I am immensely pleased by the Award! It is indeed a special honor, coming from the American Automatic Control Council, which has done so much to advance and to unify the field of control. I recall with delight the long sequence of Joint Automatic Control Conferences and the subsequent American Control Conferences. The Council's many current activities, including its participation in this 13th IFAC World Congress, continue its invaluable service to the control community.

In receiving the award I wish to recognize the support of friends, colleagues and former students. They have played a vital role in my work. I must also acknowledge the special influence of others I have known mostly or entirely through their publications. It is no surprise that Richard Bellman was one of them. Let me make a few remarks about his legacy and how it affects us today.

In examining his writings I am struck by his genuine interest in applications and obvious desire to make his findings useful to a wide audience. In this, I believe, there are lessons to be learned. I'll note four.

1. Fundamental ideas have greater power when they are elegantly expressed. There is no better example than Bellman's formulation of dynamic programming. Its wonderfully stated ideas permeate and illuminate much of what we do, ranging from deep theoretical results in optimal control to practical, on-line implementation of controllers.

2. Propagation of knowledge is enhanced by the establishment of connections across fields and disciplines. Bellman's 1960 book, "Introduction to Matrix Analysis," illustrates this point beautifully. The discussions and bibliographies and the end of each chapter are marvelous sources of insight and diversity.

3. In mathematical exposition, clarity and accessibility are precious attributes. Bellman had a special talent for keeping mathematical developments closely connected to first principles and organizing them in simple, easy to understand parcels. He had the courage to compromise generality for clarity and, on occasion, rigor for insight.

4. Numerical issues are crucial to control applications. Bellman realized this early, four decades ago, when he addressed controller implementation, algorithm design, error analysis, and computational complexity.

Over the years the field of control has become mature, complex and diverse. We now need, as Richard Bellman did so well, to give greater attention to the means by which we encourage its progress and impact on society. On that point I will end. Thank you.

R.E. Kalman

Year: 
1997
Citation: 
For fundamental contributions to control and system theory

R.E. Kalman was born in Budapest, Hungary, on May 19, 1930. He received the bachelor's degree (S.B.) and the masterís degree (S.M.) in electrical engineering, from the Massachusetts Institute of Technology in 1953 and 1954, respectively. He received the doctorate degree (D.Sci.) from Columbia University in 1957.

Lotfi Zadeh

Year: 
1998
Citation: 
For fundamental contributions to systems theory and pioneering works on fuzzy sets and systems leading to a global trend on machine intelligence quotient systems

Lotfi A. Zadeh joined the Department of Electrical Engineering at the University of California, Berkeley, in 1959, and served as its chairman from 1963 to 1968. Earlier, he was a member of the electrical engineering faculty at Columbia University. In 1956, he was a visiting member of the Institute for Advanced Study in Princeton, New Jersey.

Yu-Chi Ho

Year: 
1999
Citation: 
For sustained and significant contributions to research and education in optimization and control of dynamic systems, and his establishment of a new branch of these fields, Discrete Event Dynamic Systems

Yu-Chi (Larry) Ho received his S.B. and S.M. degrees in Electrical Engineering from M.I.T. and his Ph.D. in Applied Mathematics from Harvard University. Except for three years of full time industrial work he has been on the Harvard Faculty. Since 1969 he has been Gordon McKay Professor of Engineering and Applied Mathematics. Since 1989, he has been the T. Jefferson Coolidge Chair in Applied Mathematics and Gordon McKay Professor of Systems Engineering at Harvard.

W. Harmon Ray

Year: 
2000

Dr. W. Harmon Ray is Vilas Research Professor and past chairman of the Department of Chemical Engineering at the University of Wisconsin in Madison. He received his B.A. and B.S.Ch.E. from Rice University and his Ph.D. from the University of Minnesota in 1966. Before joining the University of Wisconsin he was a faculty member at the University of Waterloo in Canada, from 1966 to 1970, and at the State University of New York at Buffalo, from 1970 to 1976.

Pages