Title Irena Lasiecka
United States of America

Irena Lasiecka

Affiliation
University of Memphis

Contact Menu

Irena Lasiecka received her PhD in Applied Mathematics from the University of Warsaw in 1975, and was appointed to the Polish Academy of Sciences. It was an invitation by A.V. Balakrishnan to join UCLA in 1977 that brought her to the US, where her professional career has developed. Since then, her research interests have focused on the general area of control theory for infinite dimensional systems - predominantly Partial Differential Equations (PDEs). Here, her work has laid and developed the foundations of the theory with common emphasis on boundary/point control. She has published several research monographs and more than 300 research papers on topics such as optimal control theory, controllability, stabilization and long-time behavior for linear and non-linear problems of relevance to engineering. Her work includes mathematical breakthroughs that were required to advance the problem-oriented boundary control theory for PDEs. For this work, she was awarded in 2011 the SIAM W.I. Reid Prize. Her more recent contributions involve interactive systems with interface, describing fluid-flow/structure interaction and structural acoustics, where the goal is turbulence or utter or noise suppression. After Full Professorships at the University of Florida and the University of Virginia, where she was the Commonwealth Professor of Mathematics, since 2013 she is a Distinguished University Professor and Chair of the Department of Mathematical Sciences, University of Memphis. She has also held numerous visiting appointments in US and Europe. She has been in the ISI's List of Highly Cited researchers since its inception. She is an IEEE Fellow, AMS Fellow and SIAM Fellow, an IEEE Distinguished Lecturer, a Plenary Speaker at SIAM, AMS, IEEE Conferences and a former Chair of the IFIP TC7-Committee on Modeling and Optimization. She is the EIC of Applied Mathematics and Optimization [Springer] and Evolution Equations and Control Theory [AIMS]. Her work has been supported by NSF, AFOSR, ARO and NASA.

Outdated or incorrect information? Please click here to update us with the correct information.