Yu-Chi Ho
Yu-Chi Ho
Contact Menu
Yu-Chi (Larry) Ho received his S.B. and S.M. degrees in Electrical Engineering from M.I.T. and his Ph.D. in Applied Mathematics from Harvard University. Except for three years of full time industrial work he has been on the Harvard Faculty. Since 1969 he has been Gordon McKay Professor of Engineering and Applied Mathematics. Since 1989, he has been the T. Jefferson Coolidge Chair in Applied Mathematics and Gordon McKay Professor of Systems Engineering at Harvard. He was also the visiting professor to the Cockrell Family Regent's Chair in Engineering at the University of Texas, Austin in 1989.
He has published over 140 articles and three books, one of which (co-authored with A.E. Bryson, Jr.) has been translated into both Russian and Chinese and made the list of Citation Classics as one of the most referenced works on the subject of optimal control. He is on the editorial boards of several international journals and is the editor-in-chief of the international Journal on Discrete Event Dynamic Systems. He is the recipient of various fellowships and awards including the Guggenheim (1970) and the IEEE Field Award for Control Engineering and Science (1989), the Chiang Technology Achievement Prize (1993). He is a Life fellow of IEEE, a Distinguished Member of the Control Systems Society, and was elected a member of the U.S. National Academy of Engineering (1987). In addition to service on various governmental and industrial panels, and professional society administrative bodies, he was the President of the IEEE Robotics & Automation Society in 1988 and co-founder of Network Dynamics, Inc., a software firm specializing in industrial automation.
His research interests lie at the intersection of Control System Theory, Operations Research, and Artificial Intelligence. He has contributed to topics range from optimal control, differential games, information structure, multi-person decision analysis, to incentive control, and since 1983, exclusively to discrete event dynamic systems, perturbation analysis, ordinal optimization, and computational intelligence.